

P.1

INTRODUCTION TO COMPUTER SCIENCE AND

ENGINEERING

TABLE OF CONTENTS

Very much like in Engineering .. 3

Strategic goals of this workshop:... 4

this workshop will cover: ... 5

Day 1 - Understanding the Scope and Warm up .. 6

Day 2: .. 7

From text file to executable : ... 8

Finite State Machine / Table / Diagram ... 10

Day 3 – Arrays/ Simple Abstract Data Type / Functions ... 11

Day 4 – Recursion – Stack ... 12

Day 5 - Put Fundamentals in Application ... 13

Exploration topics: ... 13

P.2

What is Computer Science:

Problem in the current AP Computer Science: Computer Science is beyond Fundamental Java
Computer programming. It is the “Computational Thinking” aspect which should be introduced as
the fundamental computer science principle, not Java programming.

Science : Study of the structure and behavior of the physical and natural world through observation and
experiment. It aims to learn the truth of something.

Engineering : Study of the making of practical application with the knowledge of pure sciences. It aims
to learn how to apply with the truth of something.

Computer Science : Study of the scientific and practical approach to computation and its applications.

Computational Thinking – the core in Computer Science!

 (by NSF) – CT is defined comprehensively to encompass computational concepts, methods,
models, algorithms, and tools.

 Computational thinking will be a fundamental skill used by in any profession, not just science
and engineers.

 CT focuses on the process of abstraction to achieve automation with:
o choosing the right model of abstraction
o clearly identify the layers of abstraction, either takes place simultaneous and/or in sequence
o clearly defining the relationships between layers and how they are linked

Contrast to popular believe, computer science is not all about programming, but about
understanding how to computationally solve problems. It is about creating high-quality
software in a systematic, controlled, and efficient manner – an overlapping aspect in
engineering.

 Computer Science “should be” primarily about how to solve a problem with computing technique.
It should be better called “Software Engineering”. This can include many aspects such as
algorithms design, languages, hardware architecture, systems software, applications software,
etc. In this 21st century, it has evolved to include web development.

It is a training in all aspects of the software life cycle, from specification through analysis and
design, to testing maintenance and evaluation of the product.

If I have to summarize Computer Science in less than 10 words – Problems Solving for Practical
Applications using Computer Technology.

Computer Electrical

Science Engineering

S
o

ft
w

ar
e

,
C

o
m

p
u

te
r

E
n

g
in

ee
ri

n
g

P.3

VERY MUCH LIKE IN ENGINEERING:

Efficiency :

 How fast?

 How much space?

 How much power?

 Trade off among speed, space, and power?

Correctness:

 Does it do the right thing?

 Tolerance level allowed?

 Trade off among this with time, storage, etc.

-ility:

 Simplicity (but and Elegant)

 Reusability

 Scalability

 Maintainability

Cost

 In memory

 In storage

 In $$$

CT has been used in our daily live..

Things that we do…. Algorithms

Looking up a name in an alphabetically
sorted list

Linear: start at the top – Binary search: start in the middle

Standing in line at a bank, supermarket,
customs & immigration

Performance analysis of task scheduling

Airline tickets booking Database transaction synchronization and processing. 2-
phase commit technique.

Trying to visit as many colleges as you
can with minimal travelling time
and distance

Traveling salesman - Given a list of cities and the distances
between each pair of cities, what is the shortest
possible route that visits each city exactly once and
returns to the origin city

Login to your google a/c Encryption…Data Base lookup

Sort out your lego pieces Using hashing algorithm (e g. ., by shape, by color,etc.)

Your browser infests your machine with
advertising about a pair of jeans
that you just looked up online.

Data Mining

(ok.. perhaps the example I gave shred a bad light over
data mining. Data mining enables professionals and

P.4

scientists to learn from pattern in order to analyze and
predict.)

Grade school arithmetic GCD, Factorial

More…. in :

 Mathematics, Physics

 Biology, Medicine, NeuroSciences

 Astronomy, Aerospace

 Meteorology

 Machine learning, such as the Credit Cards system, Wall Street, Amazon, Google, Facial
Recognition

 Economics, Law, Healthcare

 Other areas such as archaeology, Journalism, Music, English, Art, Design, Photography, …

Trend in college

An introduction of computer science, based on the principles of computational thinking will be used as
the entry point for any entering engineering student. Soon it will be an entry point for any student
with limited programming experience. Many strong universities, such as CMU, MIT, Cornell, U
Penn, Brown, Harvard, etc., have already made basic computer science concept and/or
programming as an entry level requirement for engineering students.

From my personal professional experience, in the fiercely competitive software development industry,
if you are judging by the title, it is called “Software Engineer”, not programmer. It really depends
on how and what you receive from your either academic training, and/or your personal endeavor.
No matter which school you go to, it really boils down to your own self-motivation and initiative to
stretch your own full potential.

STRATEGIC GOALS OF THIS WORKSHOP:

 Mainly to aim for the students who show possible interest in computer science major in College.

 Increase competence and confidence in computational problem solving.

 Explore the process and concepts needed to go from high-level descriptions of algorithms to
correct imperative implementations.

 Learning a language for expressing computations in C (with some C++) using Microsoft Visual
Studio Express.

 Learning about the process of writing and debugging a program

 Learning about the process of moving from a problem statement to a computational formulation of
a method for solving the problem

 Learning a couple basic set of "recipes"/”proto-types” — in Search and Sorting Algorithms.



P.5

THIS WORKSHOP WILL COVER:

 Simple Data Structures - 1-D and 2-D data array, structure.

 Bit-wise operations.

 Simple State Machine

 Computational algorithms in Euclid, Newton's method, Sieve of Eratosthenes, etc.

 Decomposition, Abstractions, Encapsulation.

 Control Structures and iteration.

 Introduction in stack and recursion.

 Work on a few problems from USACO.

 use theoretical ideas to formulate and solve problems in computer science. It integrates
mathematical material with general problem solving techniques and computer science
applications.

 May explore concepts:
• Parallel composition.
• Polymorphism – in procedural vs object-oriented.
• Memory pointers.
• Algorithms in sort and search – e.g., quicksort, binary search, depth-first search,

breath-first-search, shortest path algorithms.
• Aware of worst-case asymptotic complexity concept.

EXPECTATION:

 If you do not have much programming experience before, this will be a good introduction level.
You will work on many programs.

 If you have had good amount of experience in data structure, you will be expected to do some
really hard work here. 

 By the end of the week, you should be able to :
o Take on basic but non-trivial problems and resolved it with programming on your own.
o Read and write code for some basic imperative algorithms and data structures. Algorithms

and Data Structures.
o Describe the implementation of a number of basic algorithms and data structure.

 Important key: You progress at your own pace. You are not expected to complete a full term
computer science introduction course within a week. Many concepts talked about in the later days
this week serves an exploratory level learning.

P.6

DAY 1 - UNDERSTANDING THE SCOPE AND WARM UP

Concepts today:

 Know about bytes vs bits. Bit-wise operation

 Binary Arithmetic

 Fundamentals in Debugger including break points, observation of variables, watch feature.

EXERCISES

Track A Scope Track B Scope

Proper Development Habit - Coding Styles

Stress in Simplicity, Elegance, and Efficiency

Do the binary math (on paper first)

Use:

HTTP://LEARNING.STORMINGROBOTS.COM

Warm up - Bare Basics. and

Basic C++ IO Stream

Complete the Computer Arithmetic, i.e. perform
+, -, *, / with binary; so no more “+, -, *,/”

Base Conversion Challenge

By the end of the day, you should be familiar
with:

 Programming Expressions in C.

 Basics in Standard I/O

 Rudimentary in using #define
preprocessor directive

 Work on the all exercises in Warm Up
packet.

Fundamentals in Debugger including break points, observation of variables, watch feature.

http://learning.stormingrobots.com/
http://www.stormingrobots.com/prod/tutorial/WarmUp-BareBasics.pdf
http://www.stormingrobots.com/prod/tutorial/streamIOBasic.pdf

P.7

DAY 2:

Review how to do binary bit arithmetic using computing.

Concepts today:

 Explore the process from a text source file to executable file.

 Control structure.. simple to nested. Rules of thumb.

 break, continue, and NO goto. Proper and safe style.

 State machine – switch

 Enumeration and structure.

 Convert conditions into number.

 Re-emphasize : Fundamentals in Debugger including break points, observation of variables,
watch feature.

 Review How to Write Robust and Readable Codes, such as:
o Proper naming convention
o Minimize global
o All global starts with an upper case. Use camel style in variables
o Local variables start with lower case.
o Useful comment
o Many more.. We will go thru these practice in our exercises.

P.8

FROM TEXT FILE TO EXECUTABLE :

 Source *.cpp file to *.exe via a compiler.

 A compiler is a computer program that translates source code written in a certain programming
language into binary image which can run by the computer, i.e. we often call it the executable
image file.

 What makes your program to become an application which can execute? Let’s take a look of
Compiler process :

C COMPILER PROCESS:

JAVA COMPILING PROCESS

P.9

P.10

FINITE STATE MACHINE / TABLE / DIAGRAM

What is FSM?

- Model decision making
- Inputs, states, outputs
- Capturing behavior

Why?

- Impose well-thought out design and flow
- Increase the likelihood of establishing a more robust infrastructure
- Help in debugging

Steps:

1. Define States - Condition / Situation / Criteria
2. Describe States - Somewhat like documentation … comment, etc.
3. Identify Input, Output through transitions from one to another State
4. Identify the behavior which cause the States Transitions - actions which cause the transitions

from one state to another.

Samples:

- Simple bank a/c operations - deposit & withdraw money
- Operate a robot based on 3 touch sensors input.

Inputs:

- Any form of stimulus from the outside world
- In high level : bank a/c balance becomes zero, getting a good grade, etc.
- In low level : single bits, such as a digital signal high or low.

States:

- Describe current condition of the FSM
- Often within a limited number of States for a given FSM

Outputs:

- depend on the state and inputs.
- Can be an input for another State

Behaviors

- Should be absolutely clear. No ambiguity is allowed.
- Complete and consistent.

P.11

DAY 3 – ARRAYS/ SIMPLE ABSTRACT DATA TYPE / FUNCTIONS

- Review binary division math
- Review State Machine
- Fundamental Programming Design:

- A lengthy topic. In order to stay within the scope of this workshop, we will just summarize it
in only the following:
o Decomposition : is a method to break a problem into self-contained, manageable

parts.
o Abstraction - it allows us to ignore the details of a piece of code, and use it as a black

box – input x, get y.

FUNCTIONS:

Description from the Master Study in Machine Learning Handbook from CMU:

 “…an introduction to programming based on a "functional" model of computation. The functional
model is a natural generalization of algebra in which programs are formulas that describe the
output of a computation in terms of its inputs—-that is, as a function...”

By the end of the day, you should be familiar
with:

 1-D, 2-D array.

 Simple Abstract Data Types - Simple
struct and Union

 Enumeration Type

 Create Functions with and without
parameters/arguments and return types.

 Program Design - multiple programs,
include header file

Work on the Array/Struct/Functions Packet.

Additional Exercises:

- Apply state machine using RobotC / NXT
/Sensors to activate motors.

MAY EXPLORE:

Multitasking programming synchronization among processes – use RobotC - as the multi-tasking
environment. Learning about pointers for memory consumption.

P.12

DAY 4 – RECURSION – STACK

 Stack : LIFO

 Recursion vs iteration:
 Factorial
 Fibonacci
 Insertion Sort

 Learn how to design recursive functions.

 May explore Depth First Search using Depth First Search method.

EXERCISES:

- Complete the exercises in the online Recursion and Iteration Packet.

Exploration Topics

What is meant by Asymptotic?

 O(1) constant

 O(log n) logarithmic

 O(n) linear

 O(n log n) "n log n"

 O(n2) quadratic

 O(n3) cubic

Why think Worst-case and Average-case?

Why choose insertion sort for data filtering. .. vs. with Quicksort.

P.13

DAY 5 - PUT FUNDAMENTALS IN APPLICATION

A robotic exercise using all the fundamentals used in the past 4 days –

- create a state machine with using 4 sensors to create all possible deterministic states
- using insertion sort to filter out noise.

EXPLORATION TOPICS:

Explore Queue : FIFO

May Explore if appropriate to the group:

 Dijkstra’s Algorithm - when no edges have negative weight

 Maze design with Breath First Search Method

 Minimum Spanning Tree - Kruskal's algorithm and Prim's algorithm.

 Find disjointed set. (because of we cannot have cyclic connections.)
- Create pairs of vertices
- sort the edges by the weight
- go thru each pair to create disjointed sets (list)
- Add to disjointed list and create spanning trees
- Add to disjointed list

o Add member (member)
 setX = which set (member)
 if member
 if setX does not exist
 create set (setX)
 else
 add member (SetX, member)

o if both pair of members does not exist one of the Sets
 add in the spanning tree list

